Mechanical Response of Porcine Liver Tissue under High Strain Rate Compression

Joseph Chen, Sourav S. Patnaik, R. K. Prabhu, Lauren B. Priddy, Jean-Luc Bouvard1, Esteban Marin, M. F. Horstemeyer, Jun Liao, and Lakiesha N. Williams. Mechanical Response of Porcine Liver Tissue under High Strain Rate Compression, Bioengineering. 2019, 6(2), 49; doi:10.3390/bioengineering6020049

Compressive Mechanical Properties of Porcine Brain: Experimentation and Modeling of the Tissue Hydration Effects

R. K. Prabhu, M. T. Begonia, W. R. Whittington, M. A. Murphy, Y. Mao, J. Liao, L. N. Williams , M. F. Horstemeyer, J. Sheng. Compressive Mechanical Properties of Porcine Brain: Experimentation and Modeling of the Tissue Hydration Effects, Bioengineering. 2019, 6(2), 40; doi:10.3390/bioengineering6020040

Quantitative Analysis of Tissue Damage Evolution in Porcine Liver With Interrupted Mechanical Testing

Chen, J., Bryn, B. Prabhu, R., Patnaik, S.S., Bertucci, R., Rhee, H., Horstemeyer, M.F., Hong, Y., Williams, L. N., Liao, J. Quantitative Analysis of Tissue Damage Evolution in Porcine Liver With Interrupted Mechanical Testing Under Tension, Compression, and Shear, Journal of Biomechanical Engineering. 2018, DOI: 10.1115/1.4039825.

Prospective preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a targeted drug delivery system for the induction of cell death in rodent osteosarcoma cells

Prabhu, R., Kovach, A. D., Nguyen, V., Gambino, J., Zachary, F., Bulla, S., Liao, J., Williams, L. N. Prospective preliminary in vitro investigation of a magnetic iron oxide nanoparticle conjugated with ligand CD80 and VEGF antibody as a targeted drug delivery system for the induction of cell death in rodent osteosarcoma cells. Bioresearch Open Access.5, 2016:299-307

A Coupled Experiment-Finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials

Prabhu, R., Horstemeyer, M., Mao, M., Whittington, W., Patnaik, S., Begonia, M., Williams, L.N., Liao, J. A Coupled Experiment-Finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials, Journal of Visualized Experiments. 2015

Experimental Evidence of Mechanical Isotropy in Porcine Lung Parenchyma

Weed, B., Patnaik, S., Rougeau-Browning, M., Brazile, B., Liao, J., Prabhu, R., Williams, L.N. Experimental Evidence of Mechanical Isotropy in Porcine Lung Parenchyma. Materials. 8, 2015:2454-2466

Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression

Wheatley, B. B., Pietsch, R. B., Donahue, T.L.H., Williams, L.N. Fully non-linear hyper-viscoelastic modeling of skeletal muscle in compression. Computer Methods in Biomechanics and Biomedical Engineering. 2015: DOI:10.1080/10255842.2015.1118468

On the Bending Properties of Porcine Mitral, Tricuspid, Aortic, and Pulmonary Valve Leaflets

Brazile, B., B. Wang, G. Wang, R. Bertucci, R. Prabhu, S.S. Patnaik, J.R. Butler, A.K. Claude, E. Brinkman-Ferguson, L.N. Williams, and J. Liao. On the Bending Properties of Porcine Mitral, Tricuspid, Aortic, and Pulmonary Valve Leaflets. Journal of Long-Term Effects of Medical Implants 25 2015:1-14.

Direct synthesis of carbon-based microtubes by hydrothermal carbonization of microorganism cells

Li, F., Yang, J., Liao, Jiali, Li, S., Liao, Jun, Prabhu, R., Williams, L.N., Tang, Y., Tang, J., Liu, N. Direct synthesis of carbon-based microtubes by hydrothermal carbonization of microorganism cells. Chemical Engineering Journal. 276, 2015:322-330

Anisotropic Compressive Properties of Passive Porcine Muscle Tissue

Pietsch, R., Wheatley, B.B., Donahue, T.L.H., Gilbrech, R., Prabhu, R., Liao, J., Williams, L.N. Anisotropic Compressive Properties of Passive Porcine Muscle Tissue, Journal of Biomechanical Engineering. 136 (11), 2014: DOI: 10.1115/1.4028088